

Assessment of long term safety and efficacy of clotting factor concentrates

Alfonso Iorio, MD, PhD

Health Information Research Unit & Hemophilia Program McMaster University

Canada

Disclosures for: Alfonso Iorio

In compliance with the EACCME* policy, WFH requires the following disclosures be made at each presentation

CONFLICT	DISCLOSURE — IF CONFLICT OF INTEREST EXISTS
RESEARCH SUPPORT	Baxter (Bayer, Biogen Idec, NovoNordisk, Pfizer - No conflicts)
DIRECTOR, OFFICER, EMPLOYEE	CHESS/CHR/CHARMS, WFH Data & Demographics Committee
SHAREHOLDER	
HONORARIA	Bayer, Baxter, Biogen Idec, CSL, NovoNordisk, Octapharma, Pfizer – No conflicts
ADVISORY COMMITTEE	Bayer, Baxter, Biogen Idec, CSL, NovoNordisk, Octapharma, Pfizer – No conflicts
CONSULTANT	Bayer (NovoNordisk – No conflicts)

* European Accreditation Council for Continuing Medical Education

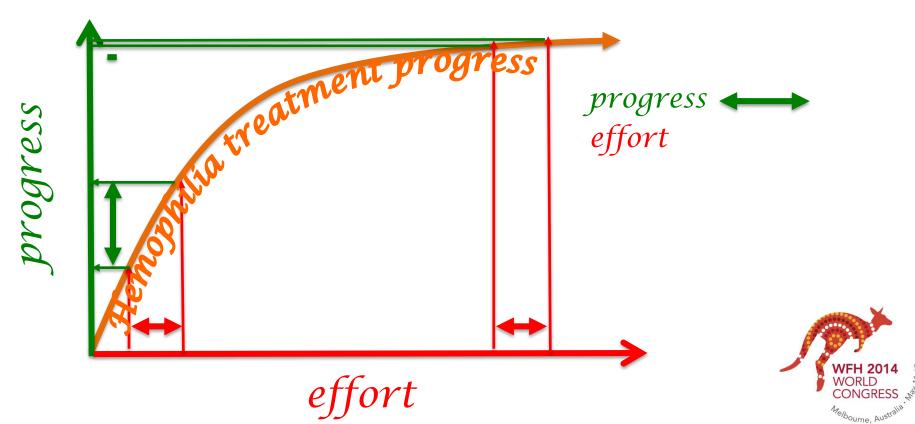
Assessment of long term safety and efficacy of clotting factor concentrates

- Vision
- A few key technical aspects
- State of the art
- Future perspectives

Assessment of long term safety and efficacy of clotting factor concentrates

- Vision
 - Safe, effective, convenient and affordable treatment for as many patients as we can wherever they happen to be born
- Technical aspects
- State of the art

Assessment of efficacy and safety

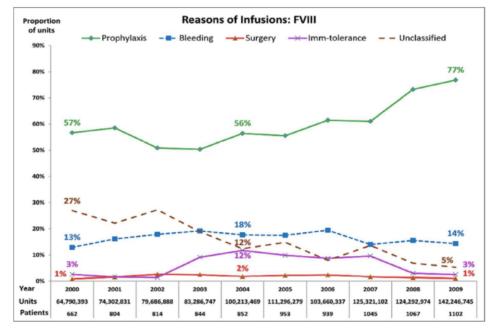

- Setting the stage:
 - 1) Efficacy and effectiveness
 - 1 Long versus short term
 - 1 Absolute versus relative
 - (1) Concentrates versus regimens
 - 1 Individuals versus populations

Haemophilia Product Development

A more realistic representation..

The reality is slightly different..

- Study design
- Study setting
- Study size
- Outcome measure(s)
- Comparator(s)



Study design

- Administrative databases
 - National health care systems / insurance databases
 - Disease registry
- Dedicated research databases
 - Prospective targeted research projects
- Comprehensiveness
- Risk of bias reduction techniques

Canadian Hemophilia Assessment Resource Management System (CHARMS)

Over 10 years

- 2260 patients
- FC units tracked
- FVIII: 1 009 097 765
 FIX: 272 406 859

Traore, A et al. First analysis of 10 years trends in national factor concentrate utilization in Canada. Hemophilia, 2014, accepted

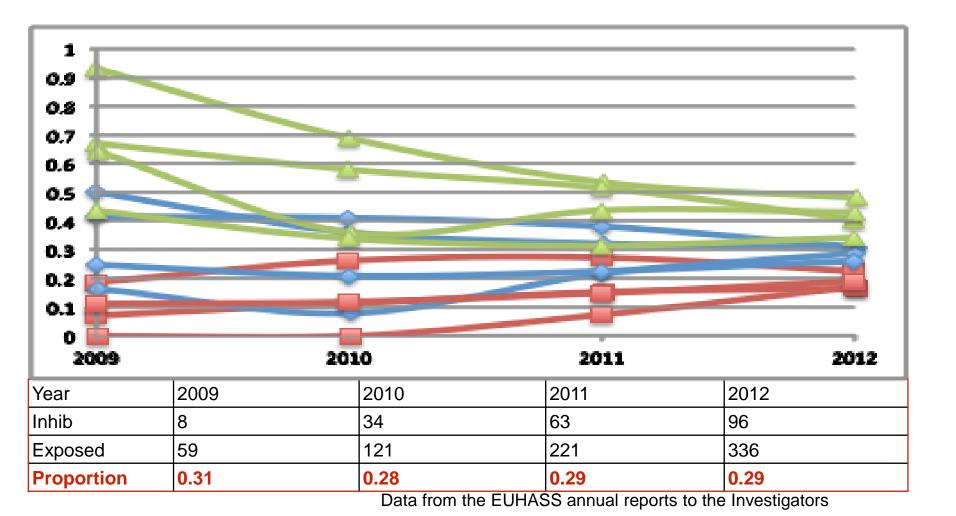
The EUHASS study

- Strengths
 - Prospective, very large inception cohort
 - Controlled (parallel, head-tohead)

- Limitations
 - Minimal information collected
 - No multivariable approach
 - Confounding still possible
 - Dynamic cohort not always at steady-state

EUHASS: Inhibitors in PTPs

Product	Inhibitors	Pt/yr	Rate	(95% C.I.)
1	5	4656	0.11	(0.03-0.25)
2	1	1987	0.05	(0.00 - 0.28)
3	6	3519	0.17	(0.06 - 0.37)
4	3	2338	0.13	(0.03 - 0.37)

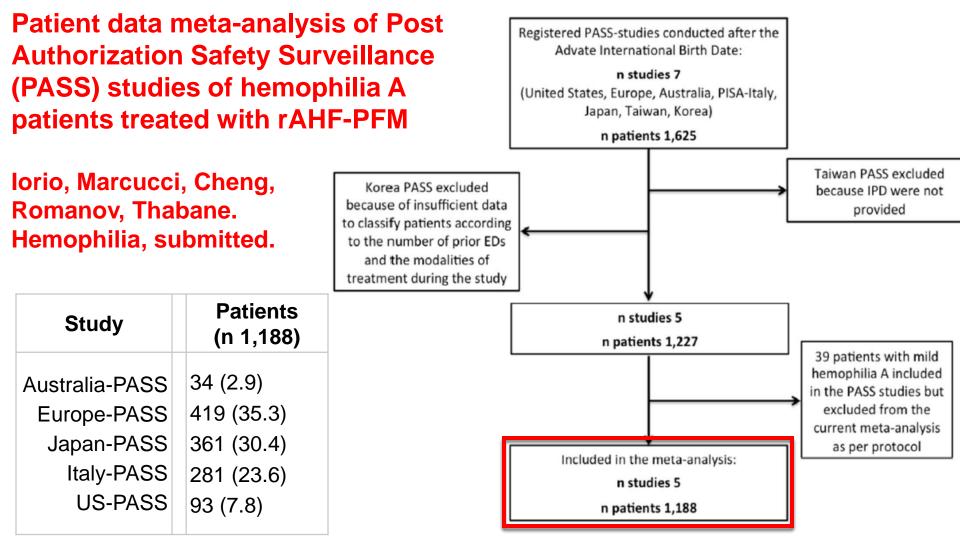

Data from the EUHASS annual reports to the Investigators

Inhibitor rates, selected recombinant FVIII

Product	Studies	Rate (x 100 py)	95% CI
Advate	9	0.10	0.05-0.18
Kogenate	9	0.12	(0.04-0.33)*
Refacto	8	0.19	0.11-0.34
PD factor VIII	4	0.09	0.02-0.45

* 0.26 (0.16 - 0.44) at fixed effect model

Xi, M et al. Journal of Thrombosis and Haemostasis : JTH, 2013; 11(9), 1655–62.



		EUHAS	S	EUHASS -ROE		DIN	
	Р	LCI	UCI	Р	LCI	UCI	
Plasma D	0.22	0.11	0.35	0.21	0.10	0.37	
Recomb	0.26	0.22	0.31	0.24	0.19	0.29	
А	0.26	0.19	0.34	0.26	0.17	0.36	
В	0.32	0.18	0.50	0.33	0.18	0.52	
С	0.30	0.22	0.40	0.22	0.13	0.33	
D	0.29	0.17	0.43	0.27	0.15	0.43	

Stakeholders and barriers

- Manufacturers
 - Accessibility to data comparative effectiveness
- Patients
 - "Disease" denial burden of data generation
- Treaters
 - Time commitment applied science
- Researchers
 - Small return

Patient Characteristics & ABR

Characteristics, n (%)	Num (%)	ABR		
>150 previous EDs	1016 (85.5)			
Prophylaxis at enrolment	743 (62.6)			
≥ twice/week during the study	587 (49.4)			
Characteristics, n (%)	Num	Median (Q1, Q3)		
All patients	1,140	3.83 (0.60, 12.90)		
On demand at enrolment	421	10.38 (2.27, 27.29)		
On prophylaxis (on study, any frequency)	710	2.00 (0, 6.73)		
On prophylaxis (on study, ≥twice/week)	557	1.66 (0, 4.78)		
Mellourne, Australian of 07 HU/Ler (01.00, 02.24)				

Median dose per infusion of 27 IU/kg (Q1 20, Q3 34).

Stakeholders and barriers

- Manufacturers
 - Accessibility to data comparative effectiveness
- Patients
 - "Disease" denial burden of data generation
- Treaters
 - Time commitment applied science
- Researchers
 - Small return

Effectiveness outcomes

- Cure (as a synonym for normal life)
 - Healthy functional joints
 - Bleeding (annualized bleeding rate)
 - Pain
 - Working capability
 - School attendance

Ways to higher effectiveness

- Improving concentrates
- Improving adherence
- Reducing cost
 - Tailoring dose
- Simplifying treatment
- Investigating social and cultural components

Safety outcomes

- Inhibitor development
 - Laboratory variability
- Blood borne infections
- Unexpected events
 - Long term toxicity of modified molecules
 - Drug interactions
 - "Clots"?

Safety outcomes

Inhibitor event rate in PTPs – so what?

As a result of our systematic review, we identified: •39 de novo inhibitors reported in 19 publications.

Individual patient data has been collected for:
•29 (74%) inhibitor cases overall
•14 (36%) from CRFs completed by study investigators

•15 (39%) extracted from patient-level information available in the published reports.

Interim results – inhibitor characteristics

Characteristic (n = 29)	Estimate
Age at inhibitor diagnosis (years)	?
Peak titre level (BU/mI)	??
Last know titre level (BU/ml)	???
Patient follow-up (mo)	????

Barbara, A. Care until Cure grant competition, CHS

Paradigm shift in trial design

- Powell, J et al. *Thrombosis and Haemostasis*, 2012; *108*(5), 913–22
 - Efficacy and safety of prophylaxis with once-weekly BAY 79-4980 compared with thrice-weekly rFVIII-FS in haemophilia A patients. A randomised, active-controlled, double-blind study...
- Valentino, L et al. *JTH*. 2012; *10*(3), 359–67.
 - A randomized comparison of two prophylaxis regimens and a paired comparison of on-demand and prophylaxis treatments in hemophilia A management.
- Manco-Johnson, MJ et al. *JTH*, 2013; *11*, 1119–1127.
 - Randomized , controlled , parallel-group trial of routine prophylaxis vs . on-demand treatment with sucrose-formulated recombinant factor VIII in adults with severe hemophilia A (SPINART).
- Valentino, L et al. *Haemophilia*. 2014; *20*(3), 398–406.
 - Multicentre, randomized, open-label study of on-demand treatment with two prophylaxis regimens of recombinant coagulation factor IX in haemophilia B subjects.
- Antunes, SV et al. *Haemophilia*, 2014; *20*(1), 65–72.
 - Randomized comparison of prophylaxis and on-demand regimens with FEIBA NF in the treatment of haemophilia A and B with inhibitors.

Long term comparison of different regimens

	NL Median (IQR)	SW, Median (IQR)	Ρ
Joint bleeds, 5 yr	10 (4 -18)	2.5 (09.3)	<.01
Nr joints	2 (1-4)	3 (2-3)	.47
HJHS (max144)	9.0 (2.0 – 18.)	4.0 (2.0 - 6.0)	<.01
Activity (max 100)	93 (81-98)	99 (93-100)	<.01
EQ-D5 utility	0,04 (0.81 – 1.00)	1.00 (0.81 – 1.00)	.93
Factor cost	851 (647-1048)	1474 (1154-1778)	<.01
Lost production	0 (0-0)	0 (0-0)	.82

Jurne, AU

Fischer, K et al. Intermediate-dose versus high-dose prophylaxis for severe hemophilia: comparing outcome and costs since the 1970s. Blood, 2013; 122(7), 1129–36.

New study design

- Interrupted time series
 - Ramsay, C. R. et al. *Int J Technol Assess Health Care*, 2003; *19*(4), 613–23.
- Paired availability design
 - Baker, S. G. et al. BMC Med Res Method, 2001; 1, 9.
- Randomized registry trial
 - Lauer & D'Agostino NEJM 2013;369(17), 1579-81.

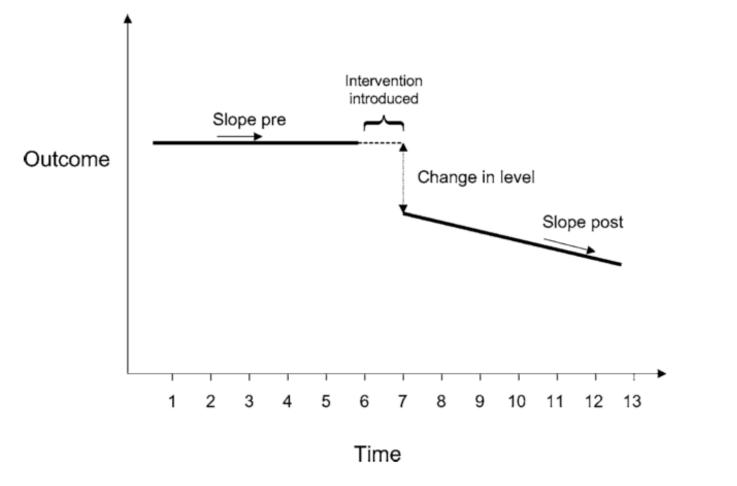
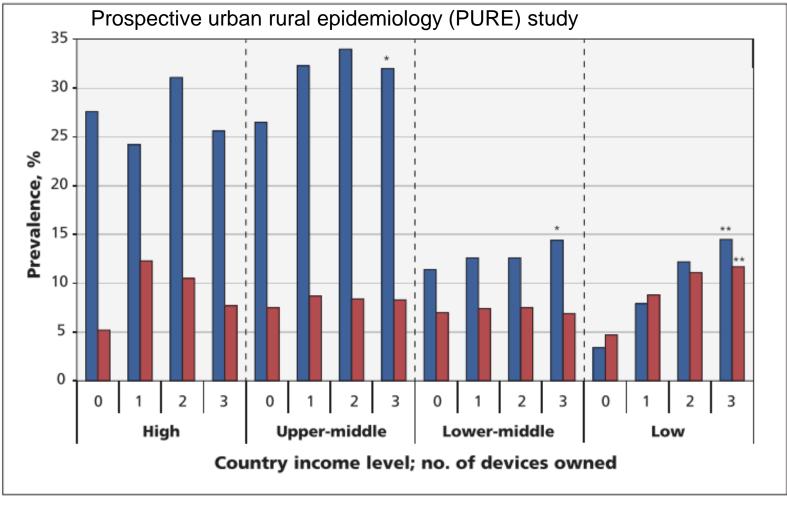



Figure 1. The effect sizes estimated by time series regression analysis of an interrupted time series design.

Lear, S. A. CMAJ, 2014 186(4), 258-66.

Innovation

• Bailey, SD. Diabetologia, 2014,57;4:738-45

• Huffman, MD and Yusuf, S. JAMA. 2014,63;14:1368-70

Conclusions

- Clear need for surveillance
- Clear evidence of progress
- Need for harmonization
- Need for guidance

hemophilia.mcmaster.ca